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EfficientNet V1 (2019)

Idea & Background

The paper[0] proposed that, modern CNNs were developed with more layers(deeper), more

channels(wider), and higher quality of input images(hgher resolutions). However, scaling up any of

the parameters mentioned monotonically to a large number would not very much benefits the model,

in particular, the model might in this case, reaches an accuracy saturation.

As shown above, the paper evaluated CNN models that monotonically scalling up its width , depth 

 and resolution , the improvements is significant until the scaling reaches a certain limit.

The paper concludes that:

Observation 1 – Scaling up any dimension of network
width, depth, or resolution improves

accuracy, but the accuracy gain diminishes for bigger models.

Intuitively, increased input resolutions needs wider networks that are able to capture more fine-

grained patterns with more pixels, as well as the higher depth such that the larger receptive fields

would help capture similar features that include more pixels.

The paper anylyzed this idea by scaling network width for different baseline networks. As illustrated

below:

These result lead us to the second observation:
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Observation 2 – In order to pursue better accuracy and
efficiency, it is critical to balance all

dimensions of network
width, depth, and resolution during ConvNet scaling.

Since the current existing methods are adjusting width, depth, resolutions manually, the paper hence

propose an new scaling method that uniformly scales all dimensions of depth/width/resolution using

a simple yet highly effective compound coefficient.

Compound Coefficient Scaling

Define a compound coefficient  that is used to uniformly scales network width, depth, and

resolution in a principled way:

depth: 

width: 

resolution: 

s.t. 

From which, the  are constants that can be determined by a small grid search,  is a user-

defined coefficient that controls how many more resources are available for model scalling.

The paper point out that, the FLOPSof a regular convolution operation is proportional to ,

that is in other words, 2X network depth will gain 2X FLOPS, but 2X network width or resolution will

increase FLOPS by 4X. Also, because convolutional layers are usually dominate the computation cost

in ConvNets, scalling a ConvNet with above equation will approximately increase total FLOPS by 

, the method constraints  so that the total FLOPS will approximately

increase by .

EfficientNet Architecture

The EfficientNet is based on MnasNet (by Platform-aware Neural Architecture Search), except

EfficientNet-B0 is slightly bigger with FLOPS targets set to 400M. The proposed EfficientNet-B0 is

as following:

In which, the MBConv block is mobile inverted bottleneck, the SE block is added into each block for

optimization.

Starting with EfficientNet-B0, the compound scaling method is performed with 2 steps:

STEP 1: first fix φ = 1, assuming twice more resources available, and do a small grid search of 


based on equation shown above. In particular, the paper found
the best values for

EfficientNet-B0 are , , , under constraint of .

STEP 2: fix  as constants and scale up baseline network with different  using above

equation, to obtain EfficientNet-B1 to B7.
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EfficientNet B0-B7 with inceased scaling up:

Note that the EfficientNet-B7 is with same accuracy of GPipe while maintaining 9X less parameters.

The paper also performed the compound scales on state-or-art models and obtained:

EfficientNet V2 (2021)

Background & Idea

EfficientNet V2 has got improved training speed and better performance than EfficientNet V1. In this

upgraded version, we focus not only on the accuracy and #parameters/FLOPs, but jointly focusing on

the training efficiency as well.

The paper[1] identifies several problems of the previouse EfficientNet V1:

Training with very large image sizes is slow. (Proposed Solution: Progressive Learning)

Depthwise Convolutions are slow in early layers but effective in later layers, since the

depthwise convolutions often cannot fully utilize modern accelerators. (Proposed Solution:

Replacing MBConv layers by Fused-MBConv via NAS)

Equally scaling up every stage is sub-optimal. (Proposed Solution: New Scaling Rule and

Restriction)

The Fused-MBConv (better utilize mobile or server accelerators) is replacing the original expension

layer and depthwise convolution layer of MBConv by a single 3x3 convolution, the paper evaluated

that by using Fused-MBConv in early stage(1-3) helps accelerate the training step with a small

overhead on parameters and FLOPs. NAS is used to automatically search for the best combination.



Training-Aware NAS and Scaling

The Training-Aware NAS is based on Platform-Aware NAS[2], which its search space is also a stage-

based factorized space, with the following search options:

Convolution Ops : {MBConv, Fused-MBConv}

Kernel Size: {3x3, 5x5}

Expension Ratio: {1,4,6}

however, in Training-Aware NAS, the paper point out that, they removed unnecessary search options

like skip ops, and resued the same channel sizes from the backbone as they aree already searched.

In addition, the search reward in Training-Aware NAS conbines model accuracy , the normalized

traning step time , and the parameter size , by using a simple weighted product ,

where  and , empirically determined to balance the trade-offs similar to [2].

The resulting architecture namely EfficientNetV2-S is given as:

As for the scaling part, EfficientNetV2-S is scaled up to EfficientNetV2-M/L using compound scaling

with optimizations: (1) Restrict maximum inference image size to 480. (2) Gradually add more layers

to later stages to increase the network capacity without adding much runtime overhead.

The comparisions of EfficientNetV2 and many other state-of-the-art models are given as the

following:

Progressive Learning

The main idea of progressive learning is to increase image size and regularzation magnitude at the

same time during the training stage. The paper agure that the loss of accuracy of only progressively
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enlarge input image size during training drops due to unbalanced regularization.

The algorithm is shown in below:

In which  is the total number of training steps, the targeting image size is , and  is a list

of regularization magnitude, where  represent a type of regularization such as dropout rate or mixup

rate value. The training is divided into  stages, the model is trained with image size  where 

.

Evaluation

EfficientNetV2-M achieves comparable accuracy to EfficientNet-B7 while training 11x faster using the

same computing resources. EfficientNetV2 models also significantly outperform all recent RegNet

and ResNeSt, in both accuracy and inference speed.

Efficient Reinforcement Learning

Reinforcement Learning

Model-based RL: Dynamic Programming
In MDP, we want to model the state value function and state-action value functions, besed on which,

we can form a strategy that greedly select actions with max state-action value in for each individual

state.

We define state value function  and stage-action value function  for a certain policy  as

following:

The Bellman Expectation Functions provids us a way to iteratively calculate value functions by

decompose them into immediate reward plus discounted value of successor state.

The Bellman Equations can be solved directly if we have full information of the environment(i.e. we

know the state transformation function), in discrete finite state environment:

From which  and  are scalars,  is state transform probability matrix. Solve it directly we get:

The Bellman Optimally Equation can be then written as:
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The complexity of solving Bellman Expectation equation is , where  is the number of states,

that means it is hard to solve when having large state space. In such case, we need to use methods

like Dynamic Programming, Monte-Carlo Estimation, or Temporal Difference. In other hand, Bellman

Optimalityt Equations are non-linear, and has no closed form solution(in general), therefore cannot

be directly solved, we need to use other methods.

Dynamic Programming iteratively solves large scale questions by decomposite them into smaller

ones, those questions have to be:

With Optimal Substructure

Overlapping Subproblems

MDP satisfy both propeerties. We can therefore use DP to solve MDP questions, note that DP

solutions requires Full Knowledge of the MDP, and are hence Model-Based RL methods.

Policy Iteration

Policy Iteration method evaluate a given policy  by dynamic programming, it iteratively use Bellman

Expectations to evaluate the state function of given policy . Specifically for each iteration :

To improve the policy, acting greedily with respect to :

The algorithm converges to  with greedy policy imrovement, otherwise converges to real .

Value Iteration

Based on Principle of Optimality, which states a policy  is an optimal policy on state  if and only

if  achives  for any state  that is reachable from . From which, it implies if we

know the solution of , we can figure out the optimal solution to any state  by One-Step Full

Backup.

Formally, if we know the solution to subproblems , the solution  can be found be one-

step lookahead:

The algorithm converges to .

In summery:
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Problem Bellman Equation Method (Algorithm)

Control
Bellman Optimality

Equation
Value Iteration

Asynchronous Dynamic Programming

DP methods described above used synchronous backups, where all states are backed up in parallel.

Asynchronous DP backs up states individually, in any order, can significantly reduce computation. It

is guaranteed to converge if all states continue to be selected.

Three simple ideas for asynchronous dynamic programming:

In-place dynamic programming

Prioritised sweeping

Real-time dynamic programming

Model-free Value-based Methods
Dynamic Programming RL methods are all model based methods, in which we need specific

environment model to excute them, it is common in real-world RL environment that we dont know

environment model, Monte-Carlo / Temporal Difference methods provided algorithms that are model-

free to predict value functions.

Monte-Carlo

Monte-Carlo(MC) methods learn directly from episodes of experience, instead of evaluate policy by

expected return(based on environment knowledge), it uses mean return(based on empirical

knowledge) to estimate the value function.

The basic idea is, to evaluate state value for , the firstt/every time  when state  is visited in an

episode, increment counter , increment total return , the

estimated state value can be calculated as:

By law of large numbers,  as .

By incremental MC updates, the final MC evaluation equation can be written as:

Temporal Difference

Temporal Difference(TD) method learns from incomplete eepisodes, in which the agent do not have

to wait until finish whole episode to update value function, like did in MC. TD updates value function

by leverage the differences between target and estimation in different time step. It uses idea of

Bootstrapping with a biased estimation. Less precise than MC, but more convinent and with lower

variance.

In Monte-Carlo methods, the value function is updated by:

Alternatively in TD method, we update value of  towards estimated return :
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Where  called TD target, and  called TD error.

TD can learn before(or without) knowing the final outcome, whereas in order for MC to learn, we

need to wait until the termination of the episode which only works in episodic environments.

On-Policy Value-based Controls

MC based: Greedy Policy Improvements

Evaluate state-action value functions  instead of state value function :

Improve policy by -greedily selecting .

TD based: Sarsa

Sarsa algorithm, replace MC by TD in control loop:

Off-Policy Value-based Controls

Objective:

Learn from observing humans or other agents.

Re-use experience generated from old policies .

Learn about optimal policy while following exploratory policy.

Learn about multiple policies while following one policy.

MC based: Importance Sampling

Gater trajectories from another policy distribution to update current distribution using a trick namely:

[Importance Sampling]

Estimate the expectation of distribution Q from P:

Define , update value towards corrected return:

Note that importance sampling can dramatically increase variance. This mechanism can also be

applied to TD:

TD based: Q-Learning

Instead of using target value based on current policy , the target value in Q-Learning beased on

greedy policy over state-action value function:

Model-free Policy Based methods
Advantages:

R ​ +t+1 γV (S ​)t+1 δ ​ =t R ​ +t+1 γV (S ​) −t+1 V (S ​)t

q ​(s, a)π v ​(s)π

q(s ​, a ​) ←t t q(s ​, a ​) +t t α(G ​ −t q(s ​, a ​))t t

ϵ q(s, a)

q(s ​, a ​) ←t t q(s ​, a ​) +t t α(R + γq(s ​, a ​) −t+1 t+1 q(s ​, a ​))t t

π ​;π ​, ....,π ​1 2 t−1

E ​[f(x)] =X∽P P (x)f(x) =∑ Q(x) ​f(x) =∑
Q(x)
P (x) E ​[ ​f(x)]X∽Q

Q(x)
P (x)

G ​ =t
π/μ

​ ​... ​G ​

μ(A ​∣S ​)t t

π(A ​∣S ​)t t

μ(A ​∣S ​)t+1 t+1

π(A ​∣S ​)t+1 t+1

μ(A ​∣S ​)T T

π(A ​∣S ​)T T

t

V (S ​) ←t V (S ​) +t α(G ​ −t
π/μ

V (S ​))t

V (S ​) ←t V (S ​) +t α( ​(R ​ +
μ(A ​∣S ​)t t

π(A ​∣S ​)t t
t+1 γV (S )) −t+1 V (S ​))t

π

q(s ​, a ) ←t t q(s ​, a ​) +t t α(R + γ max ​q(s ​, a) −a t+1 q(s ​, a ​))t t



Better convergence properties.

Effective in high-dimensional or continuous action spaces.

Can learn stochastic policies.

Disadvantages:

Typically converge to a local rather than global optimum.

Evaluating a policy is typically inefficient and high variance.

Gradient Based: Policy Gradient

Define that in a MDP environment, total reward gain from a certain policy  can be shown as:

In which policy  is parameterised by , and  represents a single trajectory,  is the probability of

the trajectory.

Since equation (1) involves reward of trajectory  times the probability of trajectory  following

policy , noted as , as well as the summing operation , it can be seen as the expectation of

reward for a certain policy:

Hence we want to maximize the expectation of reward for a certain policy, to achive this, calculate

the gradient of the function and perform gredient acsent:

 can be approximated by collecting experience as much as possible and

compute the average:

Since we dont have full model for , it is not possible to compute equation (2), that is, we dont know

, because this term depends on the environment. Here for gradient acsent with respect

to , we only need  instead of the value of  itself, therefore simply replace 

 by  we get:

After obtaining the gradient of objective function, policy parameters  are updated by gradient

acsent:
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Tips1-Add a Baseline

It is possible that in a specific reinforcement learning environment, that  is always positive. In

this case, we might monotoniclly increase the probability of a certain action, this can be solved by

adding a baseline to our equation, so that instead of naively taking rewards feedback from

environment, we compare it to the average rewards we have and make the reward be relative to all

previous rewards:

In other words, instead of rewarding trajectory by only the environment rewards, we reward a

trajectory by how looking at how good this trajectory is, comparing with all other collected

trajectories, since all actions in a same trajectory are being weighted by same reward, yet those

actions might benefits for different amount.

To address this, we weight the  by the reward obtained from time , add a discount factor to

rewards obtained in later stages.

Tips2-Assign Suitable Credit

The current version of objective function evaluates the whole trajectory by the total rewards obtained

from the environment, it is reasonable, but assumes in-precise correlations between each actions in

the trajectory.

Actor-Critic: Integrating Value-based & Policy-based
The above PG(Policy Gradient) algorithm is evaluating the policy by MC-style critic(i.e. mean

expected reward returned by the environment), in Actor-Critic, we define a critic:

Where the critic approximates state-action value function , the actor approximates the policy 

, there are parameterized by  and  respectively.

Actor-critic algorithm follow an approximate policy gradient, the actor network can be updated by:

The critic network is based on critic functions, here use Q-function as an example, the critic network

can be updated as:
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Instead of leting critic to estimate state-value function, we can allow it to alternatively estimates

Advantage function  to reduce the variance. There are many alternative

critic function choices.

Continuous Action Space
Methods proposed so far only solves for environments that are with discrete action space, so that

value functions for each actions or the probability distribution of selecting actions could be

computed. However, in real world, most of the problem are with continous action space.

Deep Derministic Policy Gradient

Deep Derministic Policy Gradient is then proposed, it is able to solve RL environments with

continuous action space by integrating ideas of DQN and PG. It can be viewed as extended version

of DQN that is able to solve problems with continous action space. DDPG algorithm uses Actor-Critic

architecture.

In DQN, in order to evaluate value function, we need , it is not possible to compute such

value in continous action space. Instead of inputing only the state into critic network and obtain the

Q-values for all actions, DDPG critic network takes next action computed from actor network as well,

and evaluate Q value for this certain action. Updating of DDPG critic network is the same to DQN:

Intuitively, in DDPG, the actor network performs differently as the one in PG, it is not possible for it to

compute probalibity distributions for all actions in continous action space, therefore we alter the

network to output a certain action that could be with max Q value. The target of the actor network in

DDPG is to maximize the value of  evaluated by critic network, therefore to update actor

network, we use gradient acsent:

Note that in DDPG, tricks like target networks for both AC networks; memory buffer are being used.

We also add a environmental noise  when performing actions to allow exploration, as well as off-

policy learning.

Proximal Policy Optimization

Baseline algorithm of OpenAI. PPO allows off-policy learning to policy gradient algorithm. In policy

gradient, we update our policy network by compute gradient of the expected reward function with

respect to policy parameters , and perform gradient acsent to maximize it:

In PPO algorithm, instead of sampling trajectories from policy , in order to increase sample

efficiency(reuse expirence), we sample trajectories from another policy  and apply a importance

sampling method to correct the difference.
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In addition, we need to add a regularzation term (or in TRPO, add a constrain) to the objective

function to constrain the difference between two distributions, therefore the objective function

becomes:

Where adaptively set the value of , specificlly when , increase ; when 

, decrease .
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